DOE's Vehicle Technologies Office

MATERIALS TECHNOLOGY

H. FELIX WU, Ph.D.

PROGRAM MANAGER

June 5, 2017

Office of Energy Efficiency and Renewable Energy,

Materials Technology Program - Overview

Automakers are seeking to improve fuel economy while maintaining or improving vehicle performance and safety

Using lightweight components and high-efficiency engines in one quarter of the U.S. fleet could save more than 5 billion gallons of fuel annually by 2030

- For structural components, the market is shifting from traditional steel to lighter weight materials such as advanced high-strength steels, aluminum alloys, magnesium alloys, and carbon fiber composites.
- Lighter structures allow for downsizing engines and increasing power density which requires materials with low density, high strength, and high stiffness at elevated temperatures.

2017 Ford F-150

2018 Cadillac CT-6

2017 Chrysler Pacifica

2017 BMW i-3

Materials Technology Program - Overview

LIGHT DUTY VEHICLE WEIGHT AND FUEL EFFICIENCY 1980 - 2016

- Reducing the weight of an internal combustion engine (ICE) vehicle by 10% can improve fuel economy by between 6% and 8%.
- A 13% improvement in freight efficiency can be achieved from a 6% reduction in vehicle weight when the reduced structural weight is replaced by cargo.

Materials Technology Program – Focus Areas

The Materials Technology Program focuses on enabling materials solutions in two areas: the glider and the powertrain materials.

- Goal: Enable a 25 percent weight reduction for light-duty vehicles including body, chassis, and interior as compared to a 2012 baseline at no more than a \$5/lb-saved increase in cost;
 - Goal: Validate a 25 percent improvement in high temperature (300 °C) component strength relative to components made with 2010 baseline cast aluminum (AL) alloys (A319 or A356) for improved efficiency of lightduty engines.

Increasing Impact on Reducing Vehicle Mass

Material Technology - Significant Opportunities & Challenges

Increasing Severity of Challenge

Material	Critical Challenges				
Carbon-Fiber Composites	Low-Cost Fibers	High-Volume Mfg.	Predictive Modeling	Recycling	Joining/ NDE & Life monitoring
Aluminum	Feedstock Cost	Manufacturing	Improved Alloys	Recycling	
Magnesium	Feedstock Cost	Corrosion Protection	Improve I	Manufacturing	Recycling
Advanced High-Strength Steels	Manufactur- ability	Wt. Reduction Concepts	May Vevelopment		
Multi-material Systems	Joining	Corrovica	Body Structure Design	New Assembly Operations	NDE & Life monitoring
Glazings	Low-Cost Lightweig t Matls.	Noise, Structure Models Simulations	Noise Reduction Techniques	UV and IR Blockers	
Metal-Matrix Composites	Feedstock Cost	Compositing Methods	Powder Handling	Compaction	Machining & Forming
Titanium	Low-Cost Extraction	Low-Cost Production	Forming & Machining	Low-Cost PM	Alloy Development

Materials Technology Program Budget – Past & Present

- Lightweight Materials this subprogram is focused on 1)
 Properties and Manufacturing, 2) Multi-material enabling, and
 Modeling & Computational Materials Science
- Propulsion Materials this subprogram is focused on 1) Engine Materials, Cast Al & Fe High Temperature Alloys, 2) Exhaust System Materials, Low Temperature Catalysts, and 3) ICME

Funding in millions	FY 2016	FY 2017	
	Enacted	Enacted	
Materials Technology	\$27.0	\$28.1	
Lightweight Materials	\$21.6	\$22.4	
Propulsion Materials	\$5.3	\$5.7	

Program Accomplishments: Multi-Material Joining

High Strength, Dissimilar Alloy Aluminum Tailor Welded Blanks

Pacific Northwest National Lab, Richland, WA

Other Participants: General Motors, TWB Company, Arconic, Inc.

Objective

Develop joining technology needed for high speed fabrication of high strength, dissimilar alloy Al-TWBs in linear and curvilinear geometries. Develop and validate predictive modeling tools for these welds. Introduce into the high volume automotive supply chain.

October 2015 – September 2017 Total project budget: \$2,400K DOE Cost Share: \$1,200K

Innovations

- Developed process parameters for effective joining of work hardenable and precipitation strengthened alloys.
- Improved predictive modeling tools using high temperature flow stress information demonstrate more accurate fit than with stress-strain behavior alone.

Impacts

- Increase the optimized and combined use of Al alloys and thicknesses leading to mass reduction and improved fuel efficiency
- Achieve greater weight savings at lower cost penalty as compared to Al assemblies

Program Accomplishments: Metals

ICME Development of Advanced High Strength Steel for Lightweight Vehicles

USAMP, Southfield, MI

Other Participants: ArcelorMittal, AK Steel Corporation, Nucor Steel Corporation, U.S. Steel, Auto/Steel Partnership, LSTC, Pacific Northwest National Lab, Brown University, Clemson University, Colorado School of Mines, Ohio State University, University of Illinois

Accomplishment:

Developed and applied an integrated experimental/computational framework to produce two steels: >1200 MPa UTS, >30% elongation, >1500 MPa UTS, >25% elongation. The team used these steels to design an automotive structure weighing 29% less and has better crash performance and stiffness than the baseline at a cost of less than \$3.18 per pound saved.

October 2011 – March 2017 Total project budget: \$8,257K

DOE Cost Share: \$6,000K

Innovations

- Leverage a team with broad expertise to build a validated computational framework that predicts steel properties as a function of chemistry and microstructure
- Achieve unprecedented combinations of strength and ductility in advanced high strength steels

Impacts

- Model framework developed as part of a commercial FEA package (LS-DYNA) to provide an essential tool to industry
- Outstanding properties reduce weight and manufacturing cost of safety critical structures

Program Accomplishments: Carbon Fiber Composites

Advanced Oxidation and Stabilization of PAN-based Carbon Fiber Precursor

Oak Ridge National Laboratory, Oak Ridge, TN

Other Participants: RMX Technologies, 4M Industrial Oxidation. C.A. Litzler Company

Objective

Developed a faster oxidation process to remove the bottleneck of carbon fiber conversion to further lower the cost of carbon fiber

October 2011 – September 2015 Total DOE budget: \$6,000K

Innovations

- Developed a new plasma oxidation technology that cuts the oxidation processing time by a factor up to 3 times.
- Demonstrated scalability, robustness, and low variability of this process.
- Reduced unit energy consumption by 75% and lowering production costs by 20%.

Impacts

- Significantly reduced carbon fiber production line footprint.
- 4M Industrial Oxidation has commercialized this technology.

Program Accomplishments: Propulsion Materials

High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

Oak Ridge National Laboratory, Oak Ridge, TN

Other Participants: CRADA Partners: Fiat Chrysler Automobiles (FCA) and Nemak; Collaborators: Granta MI, ESI North America, Flow Science, MAGMA Foundry Technologies, and Minco.

Objective: To develop high-performance cast aluminum alloys characterized by improved castability, high temperature strength, and fatigue performance so that engine cylinder heads fabricated with the new alloy will have more than 25% improvement at 300°C compared to baseline properties at 250°C at a cost no more than 10% higher than heads manufactured by alloys 319 or 356. Also, to evaluate adequacy of existing ICME models and codes for the prediction of properties and development of alloys.

November 2012 – November 2017 Total Project Budget \$5,500K DOE Cost Share \$3,500K

Innovations

- New higher temperature alloys have been developed that meet all technical criteria for the funding opportunity.
- Tensile properties exceed 300°C targets by greater than a factor of 2. High temperature goals exceeded and alloys with stable microstructures up to 350°C have been developed.
- These alloys demonstrate outstanding hot tear resistance when cast as full scale components.

Impacts

 Research team has cast a number of alloy compositions with the above these newly developed characteristics and filed a U.S. patent application for 350°C stable alloys.

Program Accomplishments: Low Temperature Catalysts

2013 FOA Award: Next Generation Three-Way Catalysts for Future, Highly Efficient Gasoline Engines

Materials Technology Program - Partnerships

Original Equipment Manufacturers

LightMAT: Lightweight Automotive Materials Consortium

- Connects the automotive industry with National Laboratory resources to facilitate lightweight materials research
 - Low Cost Mg Sheet (USAMP)
 - Die Durability for Extruded High Strength Al (SAPA)
 - Mixed Metal Composite Brake Rotors (Arconic)
 - Carbon Fiber Reinforced Epoxy Coating on Steel (Arcelor Mittal)
 - Corrosion Mitigation of Mg (Magna)
- Consortium of 10 National Laboratories with > 120 unique capabilities in materials characterization, computational tools, and manufacturing

Characterization

Computational Tools

Processing / Manufacturing

Conclusions

Upcoming Big Milestones

- Producing and testing ultra-lightweight doors (Vehma, TPI, Clemson)
- > Target low-cost carbon fiber research (ORNL)
- Lower cost, high throughput multi-material joining technologies (PNNL, ORNL)
- Casting and machining cylinder heads from new lightweight powertrain alloys for testing in extreme environments (ORNL)

Conclusions (cont'd)

Technical Challenges and Opportunities

- Multi-material systems enablers and joining technologies
 - Innovative joining technologies of CF, Mg, Al, HSS
 - ❖ NDE tools for inspection & in-process monitoring
 - Predictive weld model tools (ICWE; machine learning; big data)
 - Corrosion prevention/coating materials
- Low-cost carbon fiber and composites
- Low-cost, high-volume manufacturing processes
- High-temperature alloys development
- > Low-temperature combustion

Contact

H. Felix Wu

Phone: 202-586-4830

e-mail: felix.wu@ee.doe.gov

Sarah Kleinbaum

Phone: 202-586-8027

E-mail: sarah.ollila@ee.doe.gov

Jerry Gibbs

202-586-1182

jerry.gibbs@ee.doe.gov

Carol Schutte (currently detail at NTIS/DOC)

202-287-5371

carol.schutte@ee.doe.gov

https://energy.gov/eere/vehicles/vehicle-technologies-office-lightweight-materials-cars-and-trucks

